Beyond Erythropoiesis: Emerging Metabolic Roles of Erythropoietin

نویسندگان

  • Minna Woo
  • Meredith Hawkins
چکیده

Infiltration of inflammatory cells into adipose tissue causes insulin resistance in animal models and is associated with insulin resistance in humans (1,2). Among potential therapeutic approaches, the hormone erythropoietin (EPO) exerts anti-inflammatory effects in a variety of nonerythroid tissues (3), in which the receptor for EPO (EPO-R) is widely expressed (4). Various observations suggest a relationship between EPO and diabetes. There is an increased prevalence of anemia with inadequate EPO response in diabetes (5), and treatment of anemia slows the progression of microvascular and macrovascular complications (6). EPO reduced glucose levels in nondiabetic humans (7) and reduced diet-induced obesity and suppressed gluconeogenesis in rodents (8,9). While EPO increases adipose tissue oxidative metabolism and deletion of EPO in adipocytes results in obesity (10), failure to reproduce this highlights potential genetic and environmental influences (11). EPO has cytoprotective, proliferative, and antiinflammatory effects in a variety of tissues including pancreatic b-cells, protecting against experimental models of both type 1 and type 2 diabetes (12,13). In this issue, Alnaeeli et al. (14) elegantly demonstrate a pharmacologic role of EPO in attenuating adipose tissue inflammation prior to changes in body weight. The authors show that EPO-R is disproportionately highly expressed in adipocytes and adipose inflammatory cells, and both pharmacologic and endogenous EPO promote the skewing of adipose macrophages to an alternatively activated, predominantly M2 state. Beneficial roles of EPO are not only abolished when EPO is given to mice lacking EPO-R except in erythroid cells, but these EPO-R2deficient mice have an unopposed proinflammatory phenotype with predominance of M1-activated macrophages. Thus, the predominance of anti-inflammatory M2 macrophages in the lean nondiabetic state may be at least in part restrained by endogenous EPO. As M2 macrophages play an important role in tissue growth and differentiation, beneficial effects of EPO in tissue injury may be achieved through effects on macrophages in addition to a direct cytoprotective role. While Alnaeeli et al. attributed EPO’s metabolic benefit to effects on adipose tissue macrophages, their finding that EPO expression is high in stromal vascular fraction cells suggests that EPO might exert its effects via other inflammatory cells, which in turn could impact the inflammatory status of adipose macrophages (15). As EPO’s effects on glucose tolerance and inflammation were more striking than on insulin sensitivity, these effects may represent an association rather than a causal relationship. Indeed, some of the observed metabolic effects may be attributable to EPO’s effects on b-cells (12). Could there be an additional role for the brain in mediating EPO’s effects? EPO-R is abundantly expressed in hypothalamic proopiomelanocortin (POMC) neurons (16), and glucose sensing by POMC neurons contributes to regulation of systemic glucose metabolism (17). Another intriguing question is whether some of the insulin-sensitizing effects might be mediated by EPO-induced decreases in systemic iron stores (18), given the known association between iron overload and insulin resistance (19) (Fig. 1). The study by Alnaeeli et al. (14) provides novel insights into both pharmacologic and endogenous roles of EPO that improve glucose tolerance and reduce inflammation. Thus, EPO’s extra-erythropoietic actions may offer novel approaches to diabetes prevention and treatment. As increased risk of thrombogenesis and hypertension (4) suggest that EPO be used cautiously in diabetes, selectively harnessing EPO’s favorable metabolic effects may have therapeutic potential (20).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erythropoietin, a Novel Versatile Player Regulating Energy Metabolism beyond the Erythroid System

Erythropoietin (EPO), the required cytokine for promoting the proliferation and differentiation of erythroid cells to stimulate erythropoiesis, has been reported to act as a pleiotropic cytokine beyond hematopoietic system. The various activities of EPO are determined by the widespread distribution of its cell surface EPO receptor (EpoR) in multiple tissues including endothelial, neural, myobla...

متن کامل

Erythropoietin in Brain Development and Beyond

Erythropoietin is known as the requisite cytokine for red blood cell production. Its receptor, expressed at a high level on erythroid progenitor/precursor cells, is also found on endothelial, neural, and other cell types. Erythropoietin and erythropoietin receptor expression in the developing and adult brain suggest their possible involvement in neurodevelopment and neuroprotection. During isch...

متن کامل

Erythropoietin, iron, and erythropoiesis.

Recent knowledge gained regarding the relationship between erythropoietin, iron, and erythropoiesis in patients with blood loss anemia, with or without recombinant human erythropoietin therapy, has implications for patient management. Under conditions of significant blood loss, erythropoietin therapy, or both, iron-restricted erythropoiesis is evident, even in the presence of storage iron and i...

متن کامل

Emerging EPO and EPO receptor regulators and signal transducers.

As essential mediators of red cell production, erythropoietin (EPO) and its cell surface receptor (EPO receptor [EPOR]) have been intensely studied. Early investigations defined basic mechanisms for hypoxia-inducible factor induction of EPO expression, and within erythroid progenitors EPOR engagement of canonical Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5), ra...

متن کامل

Regulation of Erythropoiesis. Xv. Neonatal Erythropoiesis and the Effect of Nephrectomy.

The importance of erythropoietin as a regulator of erythropoiesis is undeniable, but that it is the sole regulator is controversial. Fried, Plzak, Jacobson, and Goldwasser (1) proposed a simple, unified concept for the regulation of red cell production. They suggested that the relationship of oxygen supply to demand governs the production of erythropoietin, which, in turn, through differentiati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2014